Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 6(12): 5481-5492, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38062750

RESUMEN

Cardiovascular diseases are a pre-eminent global cause of mortality in the modern world. Typically, surgical intervention with implantable medical devices such as cardiovascular stents is deployed to reinstate unobstructed blood flow. Unfortunately, existing stent materials frequently induce restenosis and thrombosis, necessitating the development of superior biomaterials. These biomaterials should inhibit platelet adhesion (mitigating stent-induced thrombosis) and smooth muscle cell proliferation (minimizing restenosis) while enhancing endothelial cell proliferation at the same time. To optimize the surface properties of Ti6Al4V medical implants, we investigated two surface treatment procedures: gaseous plasma treatment and hydrothermal treatment. We analyzed these modified surfaces through scanning electron microscopy (SEM), water contact angle analysis (WCA), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analysis. Additionally, we assessed in vitro biological responses, including platelet adhesion and activation, as well as endothelial and smooth muscle cell proliferation. Herein, we report the influence of pre/post oxygen plasma treatment on titanium oxide layer formation via a hydrothermal technique. Our results indicate that alterations in the titanium oxide layer and surface nanotopography significantly influence cell interactions. This work offers promising insights into designing multifunctional biomaterial surfaces that selectively promote specific cell types' proliferation─which is a crucial advancement in next-generation vascular implants.


Asunto(s)
Materiales Biocompatibles , Trombosis , Humanos , Adhesión Celular , Propiedades de Superficie
2.
ACS Appl Mater Interfaces ; 15(37): 44482-44492, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37695941

RESUMEN

Development of a robust photocathode using low-cost and high-performing materials, e.g., p-Si, to produce clean fuel hydrogen has remained challenging since the semiconductor substrate is easily susceptible to (photo)corrosion under photoelectrochemical (PEC) operational conditions. A protective layer over the substrate to simultaneously provide corrosion resistance and maintain efficient charge transfer across the device is therefore needed. To this end, in the present work, we utilized pulsed laser deposition (PLD) to prepare a high-quality SrTiO3 (STO) layer to passivate the p-Si substrate using a buffer layer of reduced graphene oxide (rGO). Specifically, a very thin (3.9 nm ∼10 unit cells) STO layer epitaxially overgrown on rGO-buffered Si showed the highest onset potential (0.326 V vs RHE) in comparison to the counterparts with thicker and/or nonepitaxial STO. The photovoltage, flat-band potential, and electrochemical impedance spectroscopy measurements revealed that the epitaxial photocathode was more beneficial for charge separation, charge transfer, and targeted redox reaction than the nonepitaxial one. The STO/rGO/Si with a smooth and highly epitaxial STO layer outperforming the directly contacted STO/Si with a textured and polycrystalline STO layer showed the importance of having a well-defined passivation layer. In addition, the numerous pinholes formed in the directly contacted STO/Si led to the rapid degradation of the photocathode during the PEC measurements. The stability tests demonstrated the soundness of the epitaxial STO layer in passivating Si against corrosion. This study provided a facile approach for preparing a robust protection layer over a photoelectrode substrate in realizing an efficient and, at the same time, durable PEC device.

3.
ACS Appl Mater Interfaces ; 15(4): 6058-6068, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653314

RESUMEN

The application of two-dimensional (2D) materials has alleviated a number of challenges of traditional epitaxy and pushed forward the integration of dissimilar materials. Besides acting as a seed layer for van der Waals epitaxy, the 2D materials─being atom(s) thick─have also enabled wetting transparency in which the potential field of the substrate, although partially screened, is still capable of imposing epitaxial overgrowth. One of the crucial steps in this technology is the preservation of the quality of 2D materials during and after their transfer to a substrate of interest. In the present study, we show that by honing the achievements of traditional epitaxy and wet chemistry a hybrid approach can be devised that offers a unique perspective for the integration of functional oxides with a silicon platform. It is based on SrO-assisted deoxidation and controllable coverage of silicon surface with a layer(s) of spin-coated graphene oxide, thus simultaneously allowing both direct and van der Waals epitaxy of SrTiO3 (STO). We were able to grow a high-quality STO pseudo-substrate suitable for further overgrowth of functional oxides, such as PbZr1-xTixO3 (PZT). Given that the quality of the films grown on a reduced graphene oxide-buffer layer was almost identical to that obtained on SiC-derived graphene, we believe that this approach may provide new routes for direct and "remote" epitaxy or layer-transfer techniques of dissimilar material systems.

4.
Sci Rep ; 7(1): 7485, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28790382

RESUMEN

A new method to fabricate an Au-rich interconnected ligament substrate by dealloying the Au-based metallic glass ribbon for surface-enhanced Raman scattering (SERS) applications was investigated in this study. Specifically, three substrates, Au film, Au-based metallic glass ribbon, and dealloyed Au-based metallic glass ribbon, were studied. The dealloyed surface showed ligament nanostructure with protruding micro-islands. Based on the field emission scanning electron microscopy, reflection and scattering measurements, the dealloyed Au-based metallic glass provided a large surface area, multiple reflections, and numerous fine interstices to produce hot spots for SERS enhancements. The SERS signal of analyte, p-aminothiophenol, in the micro-island region of dealloyed Au-based metallic glass was about 2 orders of magnitude larger than the flat Au film. Our work provides a new method to fabricate the inexpensive and high SERS enhancements substrates.

5.
Nanotechnology ; 28(3): 035602, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-27928994

RESUMEN

We report a systematic study of the controlled gas-phase synthesis of silver-silica hybrid nanostructures (Ag-SiO2 NP) using the concept of evaporation-induced self-assembly. The approach includes the use of a direct gas-phase electrophoresis for size classification and in situ characterization of mobility size. Transmission electron microscopy and ultraviolet-visible light spectroscopy were employed complementarily to determine the morphology and surface plasmon resonance of Ag-SiO2 NP. Results show that two types of Ag-SiO2 NPs were successfully synthesized: (1) AgNPs decorated on a SiO2-NP (Ag-T-SiO2 NP), and (2) AgNPs doped in a cluster of SiO2-NPs (Ag-C-SiO2 NP). The physical size, morphology, and compositions of Ag-SiO2 NPs were tunable through the adjustments of precursor concentrations and the selected mobility sizes. The results also show that SPR performance, colloidal stability, and dispersibility of AgNPs enhanced significantly in an aqueous environment after the hybridization with SiO2-NP (especially for Ag-C-SiO2 NP). The results and corresponding methodology summarized here provide the proof of concept to fabricate high-purity AgNP-based hybrid nanostructures through gas-phase evaporation-induced self-assembly for future biomedical applications (e.g., hyperthermal therapy, targeted drug delivery, and antibacterial applications).

6.
Anal Chem ; 87(7): 3884-9, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25783039

RESUMEN

We report a high-resolution, traceable method to quantify number concentrations and dimensional properties of nanosheet graphene oxide (N-GO) colloids using electrospray-differential mobility analysis (ES-DMA). Transmission electron microscopy (TEM) was employed orthogonally to provide complementary data and imagery of N-GOs. Results show that the equivalent mobility sizes, size distributions, and number concentrations of N-GOs were able to be successfully measured by ES-DMA. Colloidal stability and filtration efficiency of N-GOs were shown to be effectively characterized based on the change of size distributions and number concentrations. Through the use of an analytical model, the DMA data were able to be converted into lateral size distributions, showing the average lateral size of N-GOs was ∼32 nm with an estimated thickness ∼0.8 nm. This prototype study demonstrates the proof of concept of using ES-DMA to quantitatively characterize N-GOs and provides traceability for applications involving the formulation of N-GOs.


Asunto(s)
Grafito/química , Nanoestructuras/química , Óxidos/química , Microscopía Electrónica de Transmisión , Espectrometría de Masa por Ionización de Electrospray
7.
Langmuir ; 30(43): 12755-64, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25294101

RESUMEN

We report a kinetic study of Ag nanoparticles (AgNPs) under acidic environments (i.e., pH 2.3 to pH ≈7) and systematically investigate the impact of protein interactions [i.e., bovine serum albumin (BSA) as representative] to the colloidal stability of AgNPs. Electrospray-differential mobility analysis (ES-DMA) was used to characterize the particle size distributions and the number concentrations of AgNPs. Transmission electron microscopy was employed orthogonally to provide visualization of AgNPs. For unconjugated AgNPs, the extent of aggregation, or the average particle size, was shown to be increased significantly with an increase of acidity, where a partial coalescence was found between the primary particles of unconjugated AgNP clusters. Aggregation rate constant, kD, was also shown to be proportional to acidity, following a correlation of log(kD) = -1.627(pH)-9.3715. Using ES-DMA, we observe BSA had a strong binding affinity (equilibrium binding constant, ≈ 1.1 × 10(6) L/mol) to the surface of AgNPs, with an estimated maximum molecular surface density of ≈0.012 nm(-2). BSA-functionalized AgNPs exhibited highly-improved colloidal stability compared to the unconjugated AgNPs under acidic environments, where both the acid-induced interfacial dissolution and the particle aggregation became negligible. Results confirm a complex mechanism of colloidal stability of AgNPs: the aggregation process was shown to be dominant, and the formation of BSA corona on AgNPs suppressed both particle aggregation and interfacial dissolution of AgNP samples under acidic environments.


Asunto(s)
Nanopartículas del Metal/química , Albúmina Sérica Bovina/química , Plata/química , Animales , Bovinos , Coloides , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...